Development of a Lake Macroinvertebrate Index of Biotic Integrity for Illinois

Diane Tancl
IL EPA
9511 Harrison St.
Des Plaines, IL 60016
Diane.Tancl@illinois.gov
Co-Author: Benjamin Jessup
Tetra Tech

What is an m-IBI?

- Combination of metrics to generate numeric scores responding across a gradient of human disturbance
- Scores can be compared between lakes, or for a single lake overtime
- Good for lakes because it can describe the impacts of multiple pollutants or physical disturbances

- bar line indicates actual size
http://www.epa.gov/superfund/students/clas_act/spring/critter.htm\#Biotic Index
* Shelburne Farms, Copyright © 1995.

Metrics and Stress Response

- Biological Metric- condenses a list of organisms into a number that responds predictably to natural or anthropogenic changes

Metric Categories

- Richness and Composition Metrics: total number of taxa, number of long lived taxa
- Tolerance Metrics: number of tolerant taxa, percent of intolerant taxa
- Feeding Group Metrics: Percent abundance of scrapers, percent of predators
- Population Metrics: total abundance per sample, percent dominance
- Habit Metrics: percent clingers, number of burrower taxa
- Each metric increases or decreases in response to stress.
- Stress can include many variables for example: habitat destruction, nutrient inputs, or lack of oxygen.

Macroinvertebrate

- 5 habitat method
- Littoral Plant
- Littoral Fine
- Littoral Hard Substrate (woody debris/cobble)
- Sub-littoral
- Profundal
- 3 grabs/jabs composite for each habitat type
- Each lake generated 5 samples

Data Collection

- 2008 to 2012
- IL EPA data collections, each office conducted additional surveys at about 5 lakes each year. (15 per year)
- 2011 Contracted out monitoring of 50 lakes
- 102 surveys conducted total
- Temporally standardized as late summer
macroinvertebrate samples
- Also collected physical and chemical parameters, sediment chemistry. Shoreline habitat surveys and macrophyte surveys at
 IL EPA sampled lakes only.

Sorting and Taxonomy

- Subsample to a standard 500 organism count
- Taxonomy to the lowest possible level
- Usually to genus
- Few key taxa routinely identified to species level: Ablabesmyia,
Dicrotendipes, and Polypedilum
- Had to contract out some taxonomy

Shoreline Habitat

- Followed a method described by the USEPA National Lake Assessment Surveys in 2007.
- 10 equally spaced locations are chosen at random on the shoreline of a lake.
- Navigate to stations by boat
- Fill out form which describes:
- Bottom substrates-Littoral
- Aquatic macrophytes-Littoral
- Fish cover-Littoral
- Canopy-Riparian
- Understory-Riparian
- Shoreline substrate-Riparian
- Human Influence-Riparian
- Physical Habitat Features

		Physical Habitat Characterization - Lakes					
Station$(A \cdot J)$	Site 10	RHZE		Date.	6/13/2011		
	A	Deptn At Staton (f)	3		Latitude	41.6522	
					Longtude	-87.7952	
Was Station Relocated (ym)? is it an island(F / m)?		N	Was station dropped (y/m)? Unable to sample (y/n)?			N	
		N				N	
	Littoral Zone			Riparian Zone			
	Surtace Film None			0-Absem(0\%) 12Sparse(<10\%) 2=Mod.(10-40\%) 3-Heasy(41-75\%) 4-Vary Heasy(e75\%)			
				Canopy ($>15 \mathrm{ft}$ high)Canopy Type - None			
	Bottom Substrate						
	Sedrack (-40to rem biger hah a tan (9-4)- 		0				0
			0				0
	Deutes (banmat -cat siex) (D-4)- 		0	Understory $(1.5 \mathrm{ft}-16 \mathrm{fl})$ 			
	Orverf (latjbeg-tesnas bal sie (0-4).		0				
	Send (* isdieua ven-priv) (0-4)-		0	Weety 5 trn b/Sanings (0-4 abeve) - Tall harts. praseses farbs (b-4 above)			0
	Sa. diay wt Hues (9-4)-		2				0
	Weody Detrs (b-s)-		0	Ground Cover (<1.5 f.)			
	Orpanc (ay peck, burtas) (0-4)		0	Woedy finnewliapings (0-4 meved) - Herbs. grasses. trins (b-4 abive)- Standing Waterthuntaited Veg. (B-4 above)- 			0
	Vepetaten wr ather (0-4)-		4				3
	Bottom Substrate Color Bottom Substrate Odor		Black				2
			None				0
	Aquatic Macrophytes			Shoreline Substrate Zone			
	Submergent (0-4) Emergent (0-4) Floating (0-4) Total Macrophyte Coverage (0-4) Op itacreptyles extend notaward (ybri?		4	Doublers fastellal -tar san) (0-4- Gravel (batytug-ienns ball wise $00-4$ - 			0
			2				0
			0				0
			4				0
			Y				0
	Fish Cover			 sat chay ar Heach (0.4).			0
	Aquale 4 mundied Hebesent Veg (0-4)			Wuety Dabia is-4.			0
1 MA		1.1. Arferen	ancmi P				

Macrophyte Surveys

Aquatic Macrophyte Survey Sample Size by
Lake Size and Secchi Depth

Lake Size (acres)	Total Sample Points	Surface to Secchi	Secchi to $2 x$ Secchi
<10	20	13	7
$10-49$	30	20	10
$50-99$	40	27	13
$100-199$	50	34	16
$200-299$	60	40	20
$300-399$	70	48	22
$400-499$	80	53	27
$500-799$	90	60	30
≥ 800	100	67	33

- Conducted once during monitoring season
- July or August
- Samples dependent on lake size
- Qualitative Measure of aquatic plants

Macrophyte Survey

Stressor Gradients

- Targeted Stressors are related to human impact
- Anthropogenic nutrient inputs
- Eroded shorelines
- Habitat destruction
- Management Activities
- Not targeting natural variation

Reference site criteria descriptions

Variable	Description
Primary Variables	
ImprvPct	\% imperviousness in the whole catchment
UrbIndWgt	\% low, med, and high development land uses; weighted by distance: (catchment stat $+2^{*} 500 \mathrm{~m}$ stat $+3^{*} 100$ stat)/6
AgIndWgt	\% crops and pasture uses; weighted by distance: (catchment stat $+2^{*} 500 \mathrm{~m}$ stat $+3 * 100$ stat) $/ 6$
RdDens	Count of road/stream crossings per 100 acres
RdXDens	Length of roads in miles per 100 acres
Mine	Gravel \& coal mines, weighted by distance: \# in 1km + 3*\# in 100m buffer
PtSrc	NPDES \& CERCLIS sites, weighted by distance: \# in 1km + 3*\# in 100m buffer
Secondary Variables	
RDist	Riparian Disturbance Habitat Index (as calculated by National Lakes Assessment)
LitRip	Littoral and Riparian Complexity Habitat Index (as calculated by NLA)

Station	name	county	unit	TetraTech rating	IEPA rating	Final
RCJ	ALTAMONT NEW	EFFINGHAM	CENTRAL	Other	Near Reference	Near Reference
RDE	ARGYLE	MCDONOUGH	CENTRAL	Other	Other	Other
RHZE	ARROWHEAD	COOK	NORTHERN	Extreme Stressed	Extreme Stressed	Extreme Stressed
RGZQ	AXEHEAD	COOK	NORTHERN	Extreme Stressed	Extreme Stressed	Extreme Stressed
RBZH	BEALL WOODS	WABASH	SOUTHERN	Other	Near Reference	Near Reference
RNO	BENTON	FRANKLIN	SOUTHERN	Other	Other	Other
RPK	BLACK OAK	LEE	NORTHERN	Near Reference	Other	Other
RAZI	BLOOMFIELD	JOHNSON	SOUTHERN	Other	Other	Other
RML	GEORGE	ROCK ISLAND	NORTHERN	Near Reference	Near Reference	Near Reference
RAF	GLEN O JONES	SALINE	SOUTHERN	Reference	Near Reference	Near Reference
RAP	GLENDALE	POPE	SOUTHERN	Reference	Near Reference	Near Reference
ROL	GLENN SHOALS	MONTGOMERY	CENTRAL	Near Reference	Other	Other
ROP	GOVERNOR BOND	BOND	SOUTHERN	Near Reference	Stressd	Stressd
VTI	GRASSY	LAKE	NORTHERN	Stressed	Stressed	Stressed
RGK	GRAYS	LAKE	NORTHERN	Extreme Stressed	Other	Other
RDZF	GREENFIELD	GREENE	CENTRAL	Other	Stressed	Stressed
REZQ	GRIDLEY	CASS	CENTRAL	Other	Near Reference	Near Reference
RTY	GRISWOLD	MCHENRY	NORTHERN	Other	Near Reference	Near Reference

Classification Variables

- Macroinvertebrate metric variance, correlation with class variables
- Average Latitude
- Average Longitude
- Lake surface area
- Watershed area
- Shoreline length
- Maximum depth
- Mean depth
- Relative depth
- Best fit? Only fit...Latitude

Lakes Macroinvertebrate IBI Development

Legend

Lake mIBI Stations
IEPA Central/ Southern Monitoring Units IEPA Northern M onitoring Unit
\square IEPA Central Monitoring UnitIEPA Southern Monitoring Unit

Metric Testing

- Within the classes metrics were calculated 3 ways
- Grand composite
- Deep zone composite (profundal+sub-littoral)
- Littoral zone composite (littoral fine+littoral plant+littoral hard substrate)
- Virtual composites developed and tested with 68 metrics representing 5 metric categories
- Metrics were tested for sensitivity of discrimination between reference and stressed sites
- Tested metrics for redundancy

Index

Index Validation

Index Calculation

Metric	Scoring formula ${ }^{a}$
Count of ECT taxa	$(\mathrm{X}-2) / 8$
\% Diptera individuals	$(92.2-\mathrm{X}) / 83.4$
\% filterer individuals	$(65.5-\mathrm{X}) / 65$
Count of climber taxa	$(\mathrm{X}-3) / 11$
\% tolerant individuals	$(80.6-\mathrm{X}) / 70.7$

Metric scoring formulae.

a: " X " represents the metric value. In each formula, the result is multiplied by 100 to convert to a percentage scale. Scores that are above 100 are re-set to 100 and those below 0 are re-set to 0 before averaging in an index.

Index Calculation

Scores calculated from metrics and scoring formulae in Table 12 are averaged to arrive at an index score. Any metric score that is above 100 or below 0 should be re-set to 100 or 0 before averaging.

Application

- IL EPA will continue to work with the index to develop impairment thresholds for Illinois lakes.
- The index will be incorporated into assessments for aquatic life use with other measures of human impacts.
- The index can identify high quality waters.
- Used to evaluate the effectiveness of best management practices.
- Evaluate sampling and sorting effort.

Case \#1

- You're lake biologist for the IL EPA, and your boss just called wanting some information on a lake.
- It's Lake Kind-ofa-Mystery, in central Illinois.
- The lake has never been monitored.
- The lab also just called and said no more chemical samples can be collected until they fix all of their equipment which just broke simultaneously and possibly maliciously...
- What do you do?!

Macroinvertebrate Sample

Lake Kind-ofa-Mystery

Metrics	Kind-ofa- Mystery Scores
Count ECT taxa	15
\% Diptera Ind.	7
\% Filterer Ind.	20
Ct. Climber taxa	18
\% tolerant Ind.	14

- Your macroinvertebrate dataset yields an index score of $\mathbf{1 1 3}$.

Lake Kind-ofa-Mystery

- This is the highest m -IBI score found in the central region.
- Lake Kind-ofa-Mystery is a high quality and pristine lake in need of protection.
- Degradation and human impacts should be limited in and around Lake Kind-ofa-Mystery.
- Future monitoring should done to track changes in the lake.

Lake Kind-ofa-Mystery

Case \#2

- Lake HABs-Alot is a nutrient rich lake in the southern region of IL.
- HABs-Alot has many invasive species and received an index score of 23 when it was monitored in 2008.

Lake HABs-Alot

- The lake has recently adopted a management plan for the lake, and watershed.
- Nutrient runoff has been greatly reduced, and the shoreline has been improved using natural native plantings.
- Has the biological integrity of Lake HABs-Alo†
 improved yet?

Lake HABs-Alot

- Some questions are best answered by looking at the biology directly.
- We don't have to collect a ton of chemical and physical parameters to guess whether the biology is improving, we can prove it with the macroinvertebrates.

Metrics	HABs-A lot scores
Count ECT taxa	5
\% Diptera Ind.	45
\% Filterer Ind.	35
Ct. Climber taxa	14
\% tolerant Ind.	78

- Our current index score after the management activities yields an index score of 48.9 !

Case \#3

- You have 2 lakes from different regions of Illinois. One lake is in the Northern region, the other is in the Southern region of Illinois.
- You want to compare and contrast the 2 lakes, show how they are different and how they are similar.

Lake A

Lake B

