Rivers & Streams
Habitat Enhancement

Illinois Lake Management Association Conference
March 23, 2018
By
Trent Thomas
Illinois Department of Natural Resources
Division of Fisheries
Sources of Habitat Impairment

- Sedimentation
 - Buries coarse substrates
 - Affects feeding and breeding, species loss
 - Salt Fork: 92% Generalists, 22% species loss, 26% IBI drop, from B to D Diversity rating, 100% mussel loss
 - Reduces pool depth
 - Species loss
 - Mackinaw River: 80% reduction in Smallmouth Bass abundance
 - Increases turbidity
 - Affects feeding and breeding (hybridization)
 - Iroquois River basin: 75% Hybrids, up to 100% loss of Spotfin Shiners
 - Impedes plant growth
 - Habitat loss=Species loss, reduced nutrient uptake

- Channelization
- Dredging
- Impounding
Sources of Habitat Impairment

- **Sedimentation**
- **Channelization**
- **Dredging**
 - Increased erosive flows \rightarrow bank failure \rightarrow sedimentation
 - Down-cutting \rightarrow bank failure \rightarrow sedimentation
 - Widening \rightarrow sediment deposition
 - Homogenization of habitat = Homogenization of fish pop.
 - Uniformity: Loss of riffles and pools \rightarrow featureless runs
 - Loss of species
- **Impounding**
 - Bank failure \rightarrow sedimentation
 - Down-cutting \rightarrow bank failure \rightarrow sedimentation
 - Widening \rightarrow sediment deposition
 - Homogenization of habitat = Homogenization of fish pop.
 - Uniformity: Loss of riffles and pools \rightarrow featureless runs
 - Loss of species
Sources of Habitat Impairment

- Sedimentation
 - Common practice for Drainage Districts to maintain drainage efficiency
 - ACOE dredges large rivers to maintain navigation channel for barge traffic
 - Removes riffles
 - Removes woody debris and vegetation
 - Spoon River: 39% species loss, 45% IBI drop

- Channelization

- Dredging

- Impounding
Sources of Habitat Impairment

- Sedimentation
 - Increases sedimentation
 - Leads to water quality problems

- Channelization
 - Barrier to fish movement
 - Vermilion River: 44% less species in impoundment, EIU study: distribution 37% of species disrupted by dams, 45-62% drop in fish abundance

- Dredging

- Impounding
Sources of Habitat Impairment

- Barriers
 - Riparian Clearing
 - Armoring
 - Chemical Runoff
Sources of Habitat Impairment

- Barriers
- Riparian Clearing
- Armoring
- Chemical Runoff

- Study by EIU in 2000 showed riparian tree removal leads to habitat fragmentation.
- Sangamon River: 2013 surveys - Wooded: 24 species in 280’ vs. Grassed: 19 species in 450’
Sources of Habitat Impairment

- Barriers
- Riparian Clearing
- Armoring
- Chemical Runoff

- Zero habitat = zero fish
- Water quality issues
- Super-heated water has downstream impacts
Sources of Habitat Impairment

- Barriers
- Riparian Clearing
- Armoring
- Chemical Runoff

Fish Creek: 100% loss of Redspotted Sunfish for over 4 years.
Rivers & Streams Habitat Enhancement

- In some ways, very similar to the lake habitat methods
- In other ways, very different
- Highly regulated
- Require permitting
 - Army Corps of Engineers
 - IDNR Office of Water Resources
 - Illinois Environmental Protection Agency
- Almost all methods require some degree of engineering
- More costly $$$
- Less than 10% of all stream restoration projects are monitored
Habitat Methodology

Watershed Processes

- Landuse impacts stream quality
- Frog Alley Creek: 12.95 square miles
 - About 323 acres converted to Pheasant Habitat (about 4% of watershed)
 - 6 fish species increase
 - 8 point increase in IBI
Habitat Methodology

- Bank stabilization
- Intercept run-off
- Nutrient uptake
- Shading
- LWD: Large Woody Debris
- Allochthonous inputs
Habitat Methodology

Willow Posts

- Tried as a cheap alternative to rock
- High failure rate
- Cox Creek at Jim Edgar SFWA

- Bank stabilization
- Shading
- LWD: Large Woody Debris
- Allochthonous inputs
Habitat Methodology

Planting Aquatic Vegetation

Water willow, lizard’s tail, sweet flag, marsh mallow, sedges, rushes, arrow head, pickerel weed

Extensive water willow and lizard’s tail plantings in Fox River basin; Kickapoo Creek Restoration Project (Bloomington)
Habitat Methodology

LWD – Large Woody Debris Reintroduction

- Creates habitat
- Breaks-up flow patterns
- Develops scour pools
- Increases autochthonous productivity
Habitat Methodology

Root Wads

- Creates habitat
- Bank protection
- Increases autochthonous productivity
- DuPage River
- This wood was used to create scour habitat in the Little Manistee River, MI
- Logs were used to induce scour and sand deposition
This wood was used to protect the banks, cause sediment to drop out, and create scour at wood endpoints.

Sucker River, MN
Log jam deflectors can be used effectively to cause sediment to deposit where we want to create complexity.
3.5 Narrowing of an over-widened channel using low cost groynes

River Avon

Location - Stratford-sub-Castle, Salisbury, Wiltshire SU127327

Date of construction - October 1997

Length - 125m

Cost - £2,000 (excluding fencing)

Description

The Wiltshire Avon, like many other chalk streams in Southern England has been severely degraded over the past few decades. Excessive stock of cattle in adjacent fields have lead to overgrazing and poaching of its banks resulting in extensive bank erosion and the accretion of sediment in downstream salmonid spawning gravels. The overall result has been the creation of a shallow over-wide channel with poor habitat diversity. This site was chosen because it represents a severely degraded chalk stream.

Recent habitat enhancement techniques on chalk streams have concentrated on modifying, and frequently narrowing, the channel to sustain increased flow velocities. These have involved bio-engineering methods such as the extensive use of gravel beds and woody debris.
Habitat Methodology

Lunker Structures

- Mostly used for Salmonid sp.
- Simulates undercut banks
- Provide habitat and bank protection
- Clear Creek (NW IL): significant increases in Rainbow Trout and Black Redhorse
Habitat Methodology

Mid-Channel Boulders

- Intended to provide habitat for ambush predators, such as Smallmouth Bass
- Sugar Creek: included 11 boulder clusters, unfortunately post-project Smallmouth Bass catch rates failed to reach pre-project levels.
Habitat Methodology
Bendway Weirs and Stream Barbs

- Common bank stabilization practice
- In some cases, may provide habitat
- Flow heterogeneity
- Scour pools at tips

- Potential to destroy valuable habitat
- Cause deep water pools on outside bends to fill-in
- Embarras River: EIU study of 21 Bendway weirs – 92% increase in fish abundance, but 50% species loss and 14% decrease in IBI at 34 months post-project
Opportunistic Habitat Improvements

- Embarras River
 - 1,520 feet of bank stabilization to protect an oil refinery
 - Incorporated concrete culvert pipes for catfish spawning habitat
Habitat Methodology

Artificial Riffles (or Newbury Weirs)
Successful instream habitat projects in the area...

Kickapoo Creek *(Embarras River basin)*

- 2 riffles
- 2000 feet of bank stabilization

Results
- fish abundance more than doubled
- Benefits well beyond project boundaries
Successful instream habitat projects in the area...

Farmers Branch (Sangamon River basin)

14 riffles

Results
- 69% increase in fish abundance
- Averages 4-5 more species post-restoration
- Including successful smallmouth bass spawning in the West Branch
Habitat Methodology

Dam Removal

- Removes barriers to fish migration
- Improves water quality and habitat

- Over 20 dam removals in the Chicago area
 - Fish species increased 50-182%
 - IBI scores increased 8-68%

- 2 dams in this area scheduled for removal
 - Danville Dam – Vermilion River
 - Ellsworth Park Dam – North Fork Vermilion River
Successful habitat projects in the area...

Kickapoo Creek (Sangamon River basin)

- 2 miles of re-meandered stream channel
- 25 riffles
- Aquatic vegetation
- 88 acres of reconnected floodplain
- 9 wetlands
- 2-stage ditch demonstration

Results

- 193% increase in fish abundance
- Increases of individual species up to 9400%
- 12 additional species following restoration

Benefits well beyond project boundaries (as far as 5 miles downstream)