A Living Laboratory at Southern Illinois University: Remediation and Sustainable Science for Harmful Algal Blooms Following the 2016 Dredging of Campus Lake

> Dr. Marj Brooks Rachel Steiger

Illinois Lake Management Association 33nd Annual Conference Bloomington, IL March 22-23

22 March 2018



# Acknowledgements

<u>Physical Plant at Southern Illinois University:</u>

Scott Weber, Kevin Bame, David Tippy, Bret Dougherty, Andrea Palmer, Justin Harrell, Brad Dillard

#### Sierra Club, Shawnee Chapter

#### SIU's Campus Lake: A natural outdoor laboratory

#### Problems:

- High nutrients
- High temperatures
- Low oxygen

#### Solutions:

- Remove or trap nutrients
- Cool the water
- Aerate the water
- Exercise <u>and</u> improve water quality

#### When Ecosystems Thrive, People Thrive



# Basic facts about Campus Lake

- 40 acre lake
- Contains 104,272,320 gallons of water
- Total volume refreshes ~1.75 years
- The shoreline under consideration was 12,900 feet long
- Campus lake has an *income* of nutrients from 23 storm drains
- It also had a *savings account* of decaying algae—enough wet compost to maintain hyper-eutrophic conditions for 50 years



## 2011 Sediment Depths

Sediments are not deep, however, build up of detritus was significant.



# 2015 Savings Account:



A conservative estimate of detritus was one cubic foot along the entire shoreline



# Stored nutrients in decaying algae and estimated time to flush Campus Lake naturally

| Scenarios                       | Best | Moderate | Worst |
|---------------------------------|------|----------|-------|
|                                 | 1    | 2        | 3     |
| Estimated cubic feet of algae / |      |          |       |

linear foot of shoreline



#### 2016 Southern Illinois University invested \$400,000 Lowered lake level and dredged detritus





#### Detritus, "wet compost" deposited at shoreline Buoyant starch & lipid content







# Unstable organics above dry mud flat













# Sierra Club Tackles the Compost







# 23,240 tons removed

CALL.

#### Where did the spoils go?



#### Results: Benefits of dredging shown in water column







#### Ongoing concern: Income from storm drains





#### Legend

**Boat Dock** 

Campus Lake

#### All values below eutrophic, <1,875 mg $NO_3/L$

© 2013 Google

# April 2016 Pre-dredge Nitrate

Campus Lake



Legend Campus Lake Nitrate (mg/L)

> 0.0 - 2.5 2.5 - 5 5.0 - 25 25 - 50 50 - 75 75 - 100100 - 125

Google Ea

# July 2017 Post-dredge Nitrate

Campus Lake



Legend Campus Lake Nitrate (mg/L)

> 0-2.5 2.5 - 5 5 - 25 25 - 50 50 - 75 75 - 100

100 – 125

**Google** Ea

# 2013 <u>Pre</u>-dredge Phosphate

#### Legend

**Boat Dock** 

Google



-----

Campus Lake

90 % exceed eutrophic, >0.2 mg PO<sub>4</sub>/L

© 2013 Google

# April 2016 Pre-dredge Phosphate

Campus Lake

#### 60 % exceed eutrophic, >0.2 mg PO<sub>4</sub>/L, <u>3 culverts > 1 mg/L</u>

Legend Campus Lake PO<sub>4</sub> (mg/L)

> 0.0 - 0.050.05 - 0.10.1 - 0.190.2 - 0.5

> > 0.5 – 1.0 1.0 – 1.5

Google Ea

# July 2017 <u>Post-dredge</u> Phosphate

Campus Lake

## 36 % exceed eutrophic, >0.2 mg PO<sub>1</sub>/I Highest value 0.4 mg/L

Legend Campus Lake PO<sub>4</sub> (mg/L)

 $\begin{array}{c} 0-0.05 \\ 0.05 - 0.1 \\ 0.10 - 0.19 \\ 0.20 - 0.5 \\ 0.50 - 1 \end{array}$ 

1 – 1.5

**Google** Ea

# Next steps: Inhibit CyanoHAB growth, limit N & P

#### Aerate

 In the water column, Lake contains 40 x more Fe and Ca than required to bind all PO<sub>4</sub>

HO 
$$-P - O O - P = O$$
  
 $- O O - P = O$   
 $- O Ca^{2+} - O O - P = O$ 

But that sequestration is seasonal



One calorie cools 1 gram of H<sub>2</sub>O by 1°C



- <u>540 calories of heat loss</u> gram H<sub>2</sub>0 evaporation
- Heat loss / one liter is can cool 180 L by 3 °C
- 3 °C cooling from 27 to 24 °C can slow cyanobacterial growth by 25%.

#### Next steps: Inhibit CyanoHAB growth

• Aerate



#### Cell counts dropped by 54% in 1 week, 16:8 h light:dark photoperiod, constant 30 °C

- Why?
- Aeration inhibits N<sub>2</sub> fixation

#### Wetlands & Swimming Areas



- 2 x 9 m wetland can remove
- 2 kg NO<sub>3</sub> per day
- 125 kg of organic carbon  $\rightarrow$  future detritus

#### Eco-Recreation Projects Underway: Solar fountains, Pedal-powered water cannons





Kayaking beside a fountain in Barrie, Ontario (no photo credit. https://www.tripadvisor.ca/)

Watering with pedal power at the PermaPai agriculture project in Pai, Mae Hong Son province of northern Thailand (https://permapai.wordpress.com/2013/03/08/bicycle-pump-power/)

#### Prototypes: Solar fountains, Pedal water cannons



#### Potential Eco-Rec Project: Phone and "Fitbit" apps that link cardio **directly** to ... $\rightarrow$ lake health $\widehat{\mathbb{F}}^{20}$

>

>

>

>

3 Golf

alk Indoor





#### Campus Lake is My Workout Partner

#### Innovative aspects of Sustainable Eco-Recreation

#### **Innovative aspects of Sustainable Eco-Recreation**

 Methods to control harmful algae are well known but... Now, directly linked to human health Uses sustainable solar, wind, or human power Uses natural ecology, no chemicals Experiential learning incorporates theory and research into action **Empowers students to learn, serve, and succeed** 

# \$400K investment yielded \$1M donation from the Becker Family for Boathouse Renovation



## Summary

- Dredging results: Water column P lowered by 90% to below 0.2 mg/L
- Storm drain results:
- Decrease in P from storm drain from 90% to 34% of drains above eutrophic limit
- Total storm drain input of P halved from 7 mg/L to 3.2 mg/L across the lake
- Intensive analysis underway
- -Shameless plug
  - See Rachel Steiger's poster



# Questions?

# Sigma plot of nutrients in water column over time.

### Sustainable Eco-Recreation Designed by Students



#### Possible Projects:

- Fountain maze as an obstacle course for paddle boarders
- Shoreline swimming pool with wetland water treatment <u>Benefits:</u>
- Renewable Energy
- Inter-disciplinary Experiential Education
- Career Building. Tiered funding tied to meeting deadlines, outreach, team-building
- Produce sustainable answers to a worldwide environmental problem
- New Patents and Products  $\rightarrow$  Think Burton snowboards.



#### 2013 Data

|                                 | Summer<br>(µg/L) | Late Fall<br>(µg/L) | Limit between "Low" to<br>"Moderate" nutrients as<br>NO <sub>3</sub> , PO <sub>4</sub> , or NH <sub>3</sub> (µg/L) | How many<br>multiples of<br>limit |
|---------------------------------|------------------|---------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Nitrate<br>(NO <sub>3</sub> )   | 500              | 11,000              | 1,356                                                                                                              | 8                                 |
| Phosphate<br>(PO <sub>4</sub> ) | 521              | 1,825               | 31                                                                                                                 | 58                                |
| Ammonia<br>(NH <sub>3</sub> )   | 900              | 250                 | 119                                                                                                                | 8                                 |

Nutrient levels in some areas of the lake were ~10 to ~60 times higher than concentrations that support moderate algal growth in lakes.

### Eco-Recreation Projects: Solar fountains, Pedal water



Kayaking through a fountain in Barrie, Ontario (https://www.tripadvisor.ca/)





Watering with pedal power at PermaPai agriculture project in Pai, Mae Hong Son province, Thailand (https://perma pai.wordpress.com/2013/03/08/bicycle-pump-power/)

#### Wetlands. Each day, a 2 x 9 m wetland can:

- Prevent wet compost
- $\rightarrow$  Remove 12 kg (27 pounds) of organic carbon
- $\rightarrow$ Remove 2 kg (4 ½ pounds) of nitrate
- Great habitat for young fish
- Only harvesting plants removes phosphorus

#### Eco-Rec Projects: 0

#### Obstacle course

Kayaking or paddling through a obstacle course of fountains  $\rightarrow$  aerate & cool





Water cannons battles over wetlands using pedal power  $\rightarrow$  aerate, cool,& remove nutrients





### The science: Benefits of cooling and aeration



When aerated day and night with an aquarium bubbler, cyanobacteria cannot use nitrogen from the air. Cell counts dropped 54% after one week at 30 °C (86 °F) (M. Brooks, unpublished data).



540 calories of heat are lost when 1 gram of water evaporates

For every liter evaporated, 540,000 calories of heat is lost. That's enough to cool two 40gallon aquariums from 86 to 71 °F.



Blue arrow shows that cyanobacteria have a 35% growth rate at cool temperatures where healthy algae grow at 90% of their maximal rate (Paerl et al. 2016. Harmful Algae 54:213-222).



#### Nutrient hotspots around Campus Lake

2010 Data



Brooks et al. 2013. Phase II Implementation: Report for Campus Lake, Jackson County, Illinois, Illinois Environmental Protection Agency. Illinois Clean Lakes Program





Brooks et al 2013 compared to Muchmore et al. 2004. Phase I diagnostic / feasibility study of Campus Lake, Report to the Illinois EPA

