Temporal effects of heat waves on sex ratios and gene expression in a freshwater turtle

Anthony Breitenbach PhD Candidate Illinois State University

Climate Change and Heat Waves

Predicted changes in heat wave frequency (with respect to data from 1961-1990)

Fischer and Schär 2010

Predicted changes in heat wave amplitude (with respect to data from 1961-1990)

Fischer and Schär 2010

Reptiles with TSD

TEMPERATURE-DEPENDENT SEX DETERMINATION

Fertilization

Modified from Lance and Valenzuela 2004

Modified from Lance and Valenzuela 2004

Temperature affects TSP length and timing

Matsumoto and Crews 2012

Matsumoto and Crews 2012

Crews et al. 1994; Matsumoto and Crews 2012

Field versus Laboratory

Constant versus Fluctuating

• Daily/seasonal fluctuations

Average temperatures are poor predictors of sex ratios

Les et al. 2007

Heat waves affect sex ratios

Carter et al. 2018

Current Understanding

Natural Fluctuations

Janzen 1994

Biased Sex Ratios

- Mrosovsky and Provancha 1989
- Wibbels et al. 1991
- Mrosovsky and Provancha 1992
- Marcovaldi et al. 1997
- Hanson et al. 1998
- Godley et al. 2001
- Öz et al. 2004

Caretta caretta (Loggerhead Sea Turtle)

Female biased nests, juvenile and sub-adult 89-99% females

Potential Responses

- Behavioral Plasticity
 - Nesting phenology*
 - Chrysemys picta nesting 27 days earlier on average over 13 year period (Schwanz and Janzen 2008)
 - Spatial changes in nesting
 - Lacks plasticity (Refsnider and Janzen 2012; Refsnider 2013)
- Evolve a sensitivity to a different pivotal temperature
- Migrate to cooler climate to balance sex ratios
 - Depends on water body distributions

Overarching Hypothesis

Climate change, in the form of heat waves, will influence the physiological and endocrinological underpinnings of TSD in turtles.

How does TSD operate in the field under natural conditions?
 How will climate change affect sex ratios in reptiles with TSD?

Model Species- Trachemys scripta

Hypothesis I

Heat wave timing will influence the physiological and endocrinological underpinnings of TSD.

Prediction I: A heat wave that occurs within the TSP will produce more female-biased sex ratios. **Prediction 2**: A heat wave applied during the TSP will trigger relatively higher levels of aromatase expression and relatively lower levels of Dmrt1 expression.

a. Using fluctuating incubation temperatures, when does the TSP occur?
b. How does *aromatase* and *Dmrt1* expression respond to a simulated heat wave during the predicted TSP?

Hypothesis I- Methods

- Male producing condition:
 25 ± 3°C
 """
 - "Baseline"
- Female producing condition: 29.5 ± 3°C
 - "Heat wave"
- 15-day heat wave varied temporally
- Eggs: gravid female (oxytocin)/nest
- Group eggs to avoid clutch/box/incubator effects
- 20 eggs per treatment (sex ratio) 15 extra eggs in control and 24-38 (qPCR)

Illinois Climate Network 2015; Carter et al. 2017

Hypothesis I- Methods (continued)

• Macroscopic gonad examination after euthasol injection

Matsumoto et al. 2012

Hypothesis I-qPCR

- Sample embryonic tissues on days 38 and 43 in the control and day 24-38 groups
 - Gapdh as housekeeping gene

Day

Primer Name	Sequence	Reference
Forward Gapdh	GGCTTT CCGTGTTCC AACTC	Ge et al. 2017
Reverse Gapdh	GAC AAC CTG GTC CTC CGT GTA TC	Ge et al. 2017
Forward Aromatase	CGA CAT GGA CTT TGC ATC ACA	Ramsey et al. 2007
Reverse Aromatase	GAA CCATCATCT CCAACA CACACT GGTTC	Ramsey et al. 2007
Forward Dmrt1	CAA CTA CTC CCA ATA CCA GAT GGC	Shoemaker et al. 2007
Reverse Dmrt1	GGCTTC GCA GGCTGTTTTTC	Shoemaker et al. 2007

Heatwave treatment timing: $\chi^2 = 29.324$, df = 4, p < 0.001

Middle third?

Treatment	Avg. Middle Third	% Female	Stat. Differences
Control	≈28-56	0%	
Heat wave 10-24	≈24-48	12%	a
Heat wave 17-31	≈24-48	72%	b
Heat wave 24-38	≈24-48	89%	b
Heat wave 31-45	≈25-50	84%	b
Heat wave 38-52	≈25-50	6%	а

Aromatase	df	F value	p value
Treatment	I	11.32	P = 0.003 **
Day	I	15.16	P < 0.001 ***
Treatment*Day	I	11.37	P = 0.003 **

Day

Dmrtl	df	F value	p value
Treatment	I	30.11	P < 0.001 ***
Day	I.	15.42	P < 0.001 ***
Treatment*Day	I	6.53	p = .0193 *

Day

Hypothesis I Conclusions

- TSP is likely around days 20-40 using these temperature parameters
- Middle three heat waves have similar potency to produce females
- Heat waves induce *aromatase* expression
- MPTs induce Dmrt1 expression

Treatment	Avg. Middle Third	% Female	Stat. Differences
Control	≈28-56	0%	
Heat wave 10-24	≈24-48	12%	a
Heat wave 17-31	≈24-48	72%	b
Heat wave 24-38	≈24-48	89%	b
Heat wave 31-45	≈25-50	84%	b
Heat wave 38-52	≈25-50	6%	a

Next Steps: Natural Sex Ratios

- Multi-year T. scripta field incubations
 - Eggs: gravid female (oxytocin)/nest
 - Individual nests dug for each clutch in nesting area
 - iButton data loggers
 - Macroscopic gonad examination
- **a**. What sex ratios are being produced in nature?

Next Steps: Hypothesis 2

Heat wave continuity will influence the physiological and endocrinological underpinnings of TSD in turtles.

Prediction I: With hot days held constant, more continuous heat waves will produce more female-biased sex ratios.

a. How does heat wave continuity affect sex determination?

Hypothesis 2- Methods

Carter et al. unpublished

Proportion

Heat Wave

Next Steps: Hypothesis 3

Aromatase and Dmrt1 expression will respond differentially to heat waves of varying lengths.

Prediction I: Longer heat waves will produce higher levels of aromatase expression.

Prediction 2: Heat waves will down-regulate Dmrt1 expression.

a. How does *aromatase* expression respond to a heat waves of varying lengths?

b. How does *Dmrt1* expression respond to a heat waves of varying lengths?

Heat Wave Length (Days)	Proportion Females
8	24%
П	74%
14	94%
17	89%
20	90%
23	94%
26	90%
29	100%
32	100%
35	100%

Hypothesis 3- Methods

- Sample on days 30, 33, & 36
- Gapdh as housekeeping gene

Acknowledgements

Marc Ashford

Rosario Marroquin-Flores

PhD Committee: Dr. Rachel Bowden Dr. Scott Sakaluk Dr. Ben Sadd Dr. Steven Juliano Dr. Ryan Paitz

Funding:

Community Outreach: **Jill Wallace** Jennifer Trimble Dr. Craig Gatto

SIGMA XI

Phí Sigma

Biological Sciences Honor Society

THE SCIENTIFIC RESEARCH SOCIETY

Dr. Ryan Paitz

