The Use of Bacteria and Enzymes on Pond Water and Sediment in a Controlled Environment Sandy Kubillus Integrated Lakes Management # ILM has been in the lake management business for 25 years ## Major component in effective long-term lake management is sediment / nutrient removal **Integrated Lakes Management** ### Many tools available to use: *Aeration *Chemical control *Biological control ## Tools available (continued) *Nutrient deactivation *Sediment removal *"Sediment digestion"???? Can't find empirical evidence that products perform as marketed. - * "Our pond has changed from a mucky, smelly mess to a pond we now enjoy swimming in." - * "Has the potential to save you tens of thousands of dollars in dredging costs." - * "Eliminates Excess Sludge & Nutrients to Completely Restore Your Lake, Pond or Lagoon to Crystal Clear Condition." - * "Up to 50% sludge reduction." Testimony's exist – must see for ourselves before we can recommend to or use on our clients. # ILM developed a "Test" in a controlled setting to study the effects of Bacteria & Enzymes (B & E) on pond sediment 2/24/11 Control – Air Only – B&E1 – B&E1 – B&E2 w/air w/o air w/air #### Parameters tested: #### Sediment - Before & after - * % solids, total - * Volatile solids, total - * Phosphorus, total - * Kjeldahl nitrogen, total #### Water - Biweekly - * Dissolved oxygen - * Conductivity - * Temperature - * Orthophosphorus - * Total phosphorus (monthly) - * Sediment level - * Water level - * pH - * Algae growth #### Sediment thickness results Sediment chemistry Sediment chemistry Tank 5 Overhead views Water Quality #### Results #### Aeration vs. no aeration – Tanks 1 & 2: - * Tanks without aeration had a scummy surface. - * Dissolved oxygen was significantly lower until sunlight added and plants and algae grew. Average was 4.1 mg/l lower. - * Tanks with aeration had significantly more evaporation, even with the tanks loosely covered. #### Results #### B&E1 with and without aeration - Tanks 3 & 4: - * Sediment actually increased in tank with aeration and B&E by 0.7 inches. - * B&E remained floating in tank without aeration. - * Tank 4 developed narrow-leaved pondweed and Tank 3 did not. - * Both had Cladophora algae. - * Total phosphorus averaged 0.03 mg/l higher in tank with aeration. - * Conductivity was slightly higher in tank with aeration (88 µS/cm). #### Results #### B&E1 vs. B&E2 – Tanks 3 & 5 – Both tanks aerated: - * Both had very similar water quality. - * Tank 5 developed a large colony of snails that kept the tank walls clean of algae. - * Tank 3 developed bumpy sediment with black spots. - * Sediment in both tanks developed channels. More prominent in Tank 3. - * Sediment thickness in Tank 5 did not change, but expanded in Tank 3. #### Conclusions #### **SEDIMENT:** - * Sediment did not decrease in any tank and increased in one tank. - * Sediment chemistry showed no difference in nutrients and minor changes in total volatile solids. #### WATER QUALITY: - * After several months all of the tanks had very similar water quality. - * Light was added on August 9th six months into the study. - * Water chemistry then changed significantly with plants growing in Tank 4 and algae growing in all tanks. - * Algae grew on the glass except Tank 5 which developed a snail colony. - * Tanks without aeration had a scummy surface. ### **Future Experiments** - * Continue the study to see further changes. - * Add fish 2 fathead minnows/tank. * Ideas – questions???